Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant

Aditya Kumar

GE –Global Research Niskayuna, NY March 16, 2011

DOE Program Manager: Susan Maley

DOE Contract # DE-FE0005712

Optimal Sensor Placement for Condition Monitoring

1.2M Program for Model-Based Sensor Placement for Component Condition Monitoring

Project Team

GE Global Research

- Modelina
- Estimation
- algorithms
- Optimization

Relevant Prior Work

- IGCC component models
- Model-based estimation
- Model-based large scale optimization

Program Objectives: Develop and Demonstrate a Gasifier RSC

model-based optimal sensor placement solution for online condition monitoring

> Distributed sensor network in gasifier refractory for refractory health monitoring

Distributed sensor network in radiant syngas cooler for fouling monitoring

Technical Approach

- Gasifier and RSC model for condition monitorina
- Model-based estimation of varying refractory degradation and RSC fouling
- Model-based optimization for optimal sensor placement

Program Deliverables

- Model-based estimation algorithm
- Optimization algorithm for optimal sensor placement

Anticipated Benefits

- Real-time monitoring of critical component condition
- Increased availibility 3-5%
- Increased operation efficiency 1-2%
- Develop Systematic model based computational approach for OSP
- Computer simulation demonstration on gasifier and RSC key process units in gasification section with very harsh environment

Introduction

Combined Cycle

- Firing temperature
- Stresses

Motivating Application

<u>IGCC</u>

- Gasifier T
- Carbon Conv
- Refractory wear

Wind Turbine

- Stresses
- Aerodynamic Thrust

Performance, Safety requirements

Advanced controls -

• Pushing the envelope of operation and performance

Advanced sensing system -

Online monitoring

Systematic Sensor Network Design

- Sensor type
- Number & location
- Soft sensing

Cost

Resource, Operational constraints

"Lean" Sensor set-

- Harsh environment,
- Inadequate sensing technology

Motivation for Model-Based Sensing & Design

Sensing System Performance

- Sensitivity with respect to model/ sensor errors
- Estimation accuracy (variance)
- Robustness to failures

Kalman Filter Framework

Model Inaccuracies Parametric error Structural error

Optimal sensor placement (sensor type, number and location)

Sensor Specifications

Measurement Noise

Accuracy (bias, drift)

Failure rates

Model-Based OSP Methodology

Goals

- Develop systematic model-based computational approach for optimal sensor placement with key metrics,
- Computer simulation demonstration on gasifier and RSC
- Design methodology and tools developed for broad applications

OSP Problem Formulation

Steady state error covariance matrix

 $P_{\infty} \in \Re^{n \times n}$

 $\min_{q} c^{T} q$ Minimize cost: $C^e P_{\infty}(q) C^{e^T} \leq s$ Subject to: (Precision constraint) $\sum_{\omega_k \in \Omega_q} \Pr(\omega_k) \, I(\omega_k) \ge r$ (Reliability constraint) $q_i = \{0,1\}, for \ i = 1, 2, ..., N$ (Location constraint) Ω_a is the set of possible sensor failure $I(\omega_k) = \begin{cases} 1, & precision met \\ 0, & otherwise \end{cases}$ Where, scenarios associated with a given sensor configuration a. Reliability – Quantifies probability that **Precision**- Quantifies measurement the sensor network will satisfy the accuracy using the variance of the precision requirement in the presence of measurement error. expected individual sensor failures $C^{e} P_{\infty}(q) C^{e^{T}} \leq s$ $\sum_{\omega_k \in \Omega_q} \Pr(\omega_k) I(\omega_k) \ge r$

> Probability of reduced sensor set due to individual sensor failure

With the reduced sensor set, is precision met?

OSP Methodologies

Generic Formulation

Challenges

Ω

OSP

- Combinatorial decision space: Algorithm development for solving MINLP is an active research area as compared to integer linear programming
- Computational requirements (memory and time) of error covariance's depends on underlying system dynamics.
 - for example, 3D gasifier model has 1000's of states.
 - Reliability constraint evaluation
 - Non-smooth function due to Indicator function
 - Precision evaluation and summation over combinatorial failure scenarios

Existing approaches

Seek solutions through relaxations

<u>Methods</u> Branch & Bound, Outer approximations

Approaches for Solving OSP (INLP) Problem

Relax (approximate feasible space) original INLP

Iterative Upper/Lower bound generation

MINLP optimal solution at convergence

Branch and Bound

- Integer constraint is relaxed
- NLPR provides lower bounds $Z^{L} = Z^{BB}$
- If q^{BB} is integer, $Z^U = Z^{BB}$, upper bound is obtained.

Outer Approximation

- Nonlinear constraint is relaxed
- M-OA provides lower bounds $Z^{L} = Z^{OA}$
- Primal provides upper bounds $0, Z^U = Z^{OA}$, upper bound is obtained.

 $NLPR: \qquad \min_{q,t} f(q,t) \\ g(q,t) \le 0, q \in [0,1]^{\bar{N}}, t \in \Re^l, \, \bar{N} \le N$

 $\begin{array}{ll} Primal: & min_t f(q^{OA},t) \\ & g(q^{OA},t) \leq 0, t \in \Re^l. \end{array}$

$$\begin{split} MOA: & \min_{\alpha,q,t} \alpha \\ & f(q^k,t^k) + \nabla f_{|(q^k,t^k)} \begin{pmatrix} q-q^k \\ t-t^k \end{pmatrix} \leq \alpha \\ & g(q^k,t^k) + \nabla g_{|(q^k,t^k)} \begin{pmatrix} q-q^k \\ t-t^k \end{pmatrix} \leq 0 \\ & \sum_{i \in B^j} q_i^j - \sum_{i \in NB^j} q_i^j \leq |B^j| - 1, j \leq k \\ & q \in \{0,1\}^N, t \in \Re^l, \alpha \in \Re, q^k \in \Pi \end{split}$$

 $B = \{i | q_i = 1\}, NB = \{i | q_i = 0\}$

 $\forall k \ (iteration), Z^{L,k} \leq Z^* \leq Z^{U,k}$

Existing Methods

OA Algorithm Schematic

Proposed Methodology for Solving INLP

Applicability of existing methods for solving OSP for condition monitoring

Method	Pros	Potential issues
Branch and Bound	 Directly applicable to OSP Can deal with pure integer space 	1.Enumeration2.Faster covariance computation3.Gradient computations
Outer Approximation	 Primal problem is over real variables Cannot be directly applied to OSP 	1.Faster covariance computation 2.Gradient computations
	Proposed INLP Framework	< Comparison of the second sec
ure integer space		
Faster Lyapunov based Error covariance matrix	Denn	
Analytical Gradients	NLPR cuttin plane	g 🕒 (GLPK) Feasibility
State of the art N for computation e	LP solvers	

OSP for Refractory wear monitoring for Gasifier

Optimization Results for 1D model

Model Enhancement

Gasifier

- Model based estimation of unknown gasifier wear through temperature measurements.
 - ⇒ Transient 3-D thermal model of the refractory lining to relate the effects of hot surface wear on potential thermal sensors placed in the refractory lining
 - \Rightarrow Initial OSP algorithm development and testing with 1-D model

RSC

- Model based estimation of unknown fouling through heat flux, temperature and strain in addition to existing sensors
 - ⇒ Transient RSC model capturing the effect of non-uniform axial fouling profile in RSC tube on heat flux, temperature and strain.

1-D Gasifier Model

Heat Balance

- Full problem: non-uniform wear \rightarrow 3D
- Reduced problem: uniform wear \rightarrow 1D

1D Heat Balance

Sensor Metrics*

imagination at work The cost is scaled and not representative of the actual sensor cost

$$\sum_{\omega_k \in \Omega_q} \Pr(\omega_k) I(\omega_k) \ge 0.9$$

OSP for 1D Model: Only Precision Constraint

Model	Optimal Cost (\$)	/ \	Model errors impacts estimation	
No parametric error	4571.4*	400	Total optimization times increase	
WITH parametric errors	6428.6*	2015		
		Extension to	o include "reliability".	
nagination at work	he cost is scal	ed and not repres	entative of the actual sensor cost	

Computing Reliability

- Set of all possible failures (Ω_q) is a power set $(2^{|B|})$
- Indicator function is non-smooth and approximation is required.

- Approach 1: Solve the full Reliability problem (NLP)
 - Computing the failure scenarios for only those sensors that affect the estimation precision the most (reduces the size of Ω_q)
 - Indicator function approximation
- Approach 2: Design the minimal cost sensor network that achieves desired precision and then add redundancies to meet reliability
 - Addition of multiple sensors till reliability is met (OR)
 - Addition of sensors with highest precision sensitivity

Approach 1 Computation effort

Approach 2 Suboptimal cost

OSP for 1D Model: With Reliability

* The cost is scaled and not representative of the actual sensor cost

Progress Summary

- Model: Developed the 1D and 3D models for Gasifier and detailed model for RSC fouling.
- Algorithms: Developed INLP framework (OA-INLP and BB) applicable for OSP
 - ✓ Focused on computational efficiency improvement.
 - Analytical and faster ways of gradient computations.
 - \checkmark Leverage state of the art NLP as well as ILP solvers.
- Case study: Implemented the algorithms on a 1D model of a gasifier to design the sensor network for monitoring refractory wear:
 - Considered measurement and modeling errors for robust monitoring
 - Implemented the reliability constraint using original formulation as well as approximation.
 - Identified the implementation challenges in designing reliable sensor networks
 - Tradeoff's between solution accuracy and optimization time

Continuing Work (2012)

Algorithm

- Computationally efficient approximations for reliability constraint.
- Relaxation of precision constraint (soft constraint) for design trade-off.

Modeling

 Identify sub problem in 3-D gasifier exploiting problem structure for covariance estimation: Trade-off between estimation accuracy and in problem size (memory requirement)

Applications

- Integration of OSP algorithm with 3-D gasifier model and RSC model
- Define the test cases to assess OSP algorithm performance
- Demonstrate the performance of the OSP algorithm

