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Optimal Sensor Placement for Condition Monitoring 

• Develop Systematic model based computational approach for OSP 

• Computer simulation demonstration on gasifier and RSC – key process 

units in gasification section with very harsh environment 

3-5% 
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Introduction 

Combined Cycle 
• Firing temperature 
• Stresses 

IGCC 
• Gasifier T 
• Carbon Conv 
• Refractory wear 

Wind Turbine 
• Stresses 
• Aerodynamic Thrust 

Advanced controls –  

• Pushing the envelope of 

operation and performance 

“Lean” Sensor set– 

• Harsh environment,  

• Inadequate sensing 
technology 

• Complexity/weight/  

cost limitations 

Advanced sensing system –  

• Online monitoring 

Systematic 
Sensor Network 
Design 

• Sensor type 
• Number & 

location 
• Soft sensing 
• Cost 
• …. 

Performance, Safety requirements Resource, Operational constraints 

Motivating Application 
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Motivation for Model-Based Sensing & Design  

Sensor Specifications 
•Measurement Noise 
•Accuracy (bias, drift) 
•Failure rates 

Model Inaccuracies 
•Parametric error 
•Structural error 

Sensing System Performance 
• Sensitivity with respect to  

model/ sensor errors 
• Estimation accuracy 

(variance) 
• Robustness to failures 

 
 

Optimal sensor placement (sensor type, number and location) 

Advanced 

Controls  

 Increased sensors 

 

Monitoring 

Advanced sensor 

technology 

 

Model based sensing to identify cost-
effective, reliable and robust solutions 

Kalman Filter Framework 

Increased weight, 

cost, complexity. 
Increased initial  

cost 



Model-Based OSP Methodology  

System 
(dynamic model) 
• linear 
• nonlinear 

Estimator  KF/EKF 

Optimizer 
MINLP  

Sensing performance  

(Accuracy etc.) 

Selected 

sensor set 

Key design metrics 
1. Solution accuracy 
2. Computational 

efficiency 

Problem Characteristics 

• Mixed variable 

(integer/real) 

• Large scale system 
• Non linear constrained 

optimization 

OSP 
• Sensor type 
• Number of sensors 
• Sensor Location 

Network requirements 
• Accuracy 
• Reliability 
• …. 

• Location constraint 
• Sensor Cost  
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Goals 

• Develop systematic model-based computational approach for optimal 
sensor placement with key metrics, 

• Computer simulation demonstration on gasifier and RSC 

• Design methodology and tools developed for broad applications 

Offline Design 
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OSP Problem Formulation 

min
𝑞
𝑐𝑇𝑞 Minimize cost: 

Subject to: 𝐶𝑒𝑃∞ 𝑞 𝐶
𝑒𝑇 ≤ 𝑠 (Precision constraint) 

 Pr 𝜔𝑘 𝐼 𝜔𝑘 ≥ 𝑟

𝜔𝑘∈Ω𝑞

 (Reliability constraint) 

𝑞𝑖 = 0,1 , 𝑓𝑜𝑟  𝑖 = 1, 2, … , 𝑁  (Location constraint) 

 Ω𝑞  is the set of possible sensor failure 

scenarios associated with a given sensor 

configuration q.  

Where,  𝐼 𝜔𝑘 =  
1, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑒𝑡
0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

Reliability – Quantifies probability that 

the sensor network will satisfy the 

precision requirement in the presence of  

expected individual sensor failures  

 𝑷𝒓 𝝎𝒌 𝑰 𝝎𝒌 ≥ 𝒓

𝝎𝒌∈𝜴𝒒

 

Probability of reduced 

sensor set due to 

individual sensor failure 

With the reduced 

sensor set, is 

precision met? 

Precision– Quantifies measurement 

accuracy using the variance of the 

measurement error.  

𝐶𝑒𝑃∞ 𝑞 𝐶
𝑒𝑇 ≤ 𝑠 

Steady state error covariance matrix  

 𝑃∞ ∈ ℜ
𝑛×𝑛 



Challenges  
• Combinatorial decision space:  Algorithm development for solving MINLP is an 

active research area as compared to integer linear programming 
 
• Computational requirements (memory and time)  of error covariance's depends 

on underlying system dynamics.  
• for example, 3D gasifier model has 1000’s of states. 

• Reliability constraint evaluation  
• Non-smooth function due to Indicator function 
• Precision evaluation and summation over combinatorial failure scenarios 
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OSP Methodologies 
 

𝑍∗ = min
𝑞,𝑡
𝑓(𝑞, 𝑡) 

                                                𝑠. 𝑡.,     𝑔 𝑞, 𝑡 ≤ 0,𝑞 ∈ 0,1 𝑁 

t ∈ ℜ^𝑙 

 

Methods 

Branch & Bound, 

Outer 

approximations 

 

Seek solutions 

through relaxations 

 

Solvers 

NLP (IPOPT) , SDP, 

LMI, Integer LP 

(CPLEX)  

Generic Formulation Nonlinear constraint 

IN
L

P
 

O
S

P
 

Existing approaches  

Real/Integer decision space 



Approaches for Solving OSP (INLP) Problem 

Branch and Bound 

• Integer constraint is relaxed 

• NLPR provides lower bounds 
ZL = 𝑍𝐵𝐵 

• If 𝑞𝐵𝐵 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑍𝑈 = 𝑍𝐵𝐵, upper 
bound is obtained. 

Relax (approximate feasible 
space) original INLP  

Iterative Upper/Lower bound 
generation 

MINLP optimal solution at 
convergence 

Outer Approximation 

• Nonlinear constraint is relaxed 

• M-OA provides lower bounds 
ZL = 𝑍𝑂𝐴 

• Primal provides upper bounds 
0, 𝑍𝑈 = 𝑍𝑂𝐴, upper bound is 
obtained. 

∀𝑘 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑍𝐿,𝑘 ≤ 𝑍∗ ≤ 𝑍𝑈,𝑘  

𝐵 = 𝑖 𝑞𝑖 = 1 ,𝑁𝐵 = 𝑖 𝑞𝑖 = 0  



Existing Methods 

A full enumeration tree in BB algorithm with 

two integer variables (Chinneck 2010) 

Linearized constraints 

at NLPR solutions 

Relaxed Feasible space 

Feasible 

space 

OA solution, 

Linear feasible, 

but g(q)>0 

Integer cut or 

cutting plane to 

eliminate this 

point 

 

NLPR 

 

Enumerate 
NLPR 

  𝑁 < 𝑁 

Branch/ 

Prune 

 

NLPR 

 

Define 

cutting 

planes 

MOA 

(ILP) 

Primal 

(NLP) 

Branch & Bound Outer Approximation 

OA Algorithm Schematic BB Algorithm Schematic 



Proposed Methodology for Solving INLP  
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Method Pros Potential issues 

Branch and Bound • Directly applicable to OSP 

• Can deal with pure integer 

space 

 

1.Enumeration  

2.Faster covariance computation 

3.Gradient computations 

 

Outer Approximation • Primal problem is over real 

variables 

• Cannot be directly applied 

to OSP  

1.Faster covariance computation 

2.Gradient computations 

 

Applicability of existing methods for solving OSP for condition monitoring 

Proposed INLP Framework 

Pure integer space 
 
 Faster Lyapunov based 

Error  covariance matrix 
 

Analytical Gradients 
 
  
 

State of the art NLP solvers 
for computation efficiency. 
 

 

NLPR 

 

Define 

cutting 

planes 

MOA 

(GLPK) 

Restore 

Feasibility 

(IPOPT) 
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OSP for Refractory wear 
monitoring for Gasifier 

 
Optimization Results for 1D model 
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Model Enhancement 

Gasifier  

• Model based estimation of unknown gasifier wear through 
temperature measurements. 

  Transient 3-D thermal model of the refractory lining to relate the 
effects of hot surface wear on potential thermal sensors placed in 
the refractory lining 

 Initial OSP algorithm development and testing with 1-D model 

RSC 

• Model based estimation of unknown fouling through heat flux, 
temperature and strain in addition to existing sensors 

 Transient RSC model capturing the effect of non-uniform axial 
fouling profile in RSC tube on heat flux, temperature and strain.  
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1-D Gasifier Model 

Heat Balance  
• Full problem: non-uniform wear   3D  
• Reduced problem: uniform wear   1D 

Kalman Filter 

Linearized models, Noise 

statistics 

Refractory 

Wear Estimate 

13 uncertain 

Parameters 

20 Temperature states 

15 measurements  

(possible sensor locations) 

70% survival 90% survival 

Sensor Metrics* Performance Metrics 

𝐶𝑒𝑃∞ 𝑞 𝐶
𝑒𝑇 ≤  ~5% 𝑡𝐵𝑟𝑖𝑐𝑘 

 Pr 𝜔𝑘 𝐼 𝜔𝑘 ≥ 0.9

𝜔𝑘∈Ω𝑞

 

1D Heat Balance  

* The cost is scaled and not representative of the actual sensor cost 
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OSP for 1D Model: Only Precision Constraint 

Parameters are accurate 

6 7 8 9 10 11 12 Interface 
16 

Interface 
17 

13 14 Interface 
18 

15 Shell  
19 

Shell 
20 

Parameters are uncertain (Markov model) 

Model Optimal 
Cost ($) 

Optimization 
Time (s) 

No parametric error 4571.4* 400 

WITH parametric errors 6428.6* 2015 

Hot Cold 

Hot Cold 

Three possible optimal locations 
Sensor at 6,15 OR 

Sensor at 6,19 OR 

Sensor at 6, 20 

Only one possible optimal Location 

Extension to include “reliability”. 

6 7 8 9 10 11 12 Interface 
16 

Interface 
17 

13 14 Interface 
18 

15 Shell  
19 

Shell 
20 

• Model errors impacts estimation  
• Total optimization times increase 

* The cost is scaled and not representative of the actual sensor cost 
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Computing Reliability 

• Set of all possible failures  (Ω𝑞 ) is a 

power set (2|𝐵| )  

• Indicator function is non-smooth 
and approximation is required. 

 Pr 𝜔𝑘 𝐼 𝜔𝑘 ≥ 0.9

𝜔𝑘∈Ω𝑞

 

 Pr 𝜔𝑘 𝐼𝑠𝑚𝑜𝑜𝑡ℎ 𝜔𝑘 ≥ 0.9

𝜔𝑘∈Ω𝑞

 

Ensure convexity 

 Approach 1: Solve the full Reliability problem (NLP) 

 Computing the failure scenarios for only those sensors that affect the estimation 
precision the most (reduces the size of Ω𝑞) 

 Indicator function approximation 

 

 Approach 2: Design the minimal cost sensor network that achieves desired precision 
and then add redundancies to meet reliability  

 Addition of multiple sensors till reliability is met (OR) 

 Addition of sensors with highest precision sensitivity 

Approach 2  
Suboptimal cost 

Approach 1  

Computation effort 
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OSP for 1D Model: With Reliability 

Optimal Sensor Placement  Hot Cold 

6 7 8 9 10 11 12 Interface 
16 

Interface 
17 

13 14 Interface 
18 

15 Shell  
19 

Shell 
20 

  min
𝑞
𝑐𝑇𝑞 

𝐶𝑒𝑃∞ 𝑞 𝐶
𝑒𝑇 ≤ ~𝟓% 𝑡𝐵𝑟𝑖𝑐𝑘 

  Pr 𝜔𝑘 𝐼𝒔𝒎𝒐𝒐𝒕𝒉 𝜔𝑘 ≥ 0.9𝜔𝑘∈Ω𝑞
,  

 𝑞𝑖 = [0,1],     𝑓𝑜𝑟  𝑖 = 1, 2, … , 15  

Approach 1  

Optimal Cost: $ 7857* 

  min
𝑞
𝑐𝑇𝑞 

𝐶𝑒𝑃∞ 𝑞 𝐶
𝑒𝑇 ≤ ~𝟓%  𝑡𝐵𝑟𝑖𝑐𝑘 

 

Approach 2   

Method 1 Optimal 

Cost ($) 

No  

Iterations 

 Time 

(s)/iter 

Approach 1 (BB + 

NLP-Full) 

7857* ~110 ~165s 

Approach 2 (BB + 

NLP-Precision)  

7857* ~1200 ~1s 

• Need approximations for the 
reliability constraint 

                              OR 
• Need effective mechanisms to 

shrink feasible space 

Get the precision optimal 

solution with the BB 
framework, if this meets 
reliability then stop, else 

Branch with respect to 
the highest sensor 

sensitivity index for the 

bud node selection 

Solve the precision NLP 
problem till convergence 

𝑞𝑖 = 0,1 ,
𝑁 𝑁 ≤ 15  

* The cost is scaled and not representative of the actual sensor cost 
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Progress Summary 
 Model: Developed the 1D and 3D models for Gasifier and detailed model for  

RSC fouling. 

 Algorithms: Developed INLP framework (OA-INLP and BB ) applicable for OSP  

 Focused on computational efficiency improvement. 

 Analytical and faster ways of gradient computations. 

 Leverage state of the art NLP as well as ILP solvers. 

 

 Case study: Implemented the algorithms on a 1D model of a gasifier to 
design the sensor network for monitoring refractory wear: 

 Considered measurement and modeling errors for robust monitoring 

 Implemented the reliability constraint using original formulation as well 
as approximation. 

 Identified the implementation challenges in designing reliable sensor 
networks 

 Tradeoff’s between solution accuracy and optimization time  
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Continuing Work (2012) 

Algorithm 

 Computationally efficient approximations for reliability constraint.  

 Relaxation of precision constraint (soft constraint) for design trade-off. 

Modeling 

 Identify sub problem in 3-D gasifier exploiting problem structure for 
covariance estimation: Trade-off between estimation accuracy and in 
problem size (memory requirement) 

Applications  

 Integration of OSP algorithm with 3-D gasifier model and RSC model 

 Define the test cases to assess OSP algorithm performance 

 Demonstrate the performance of the OSP algorithm 


